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Appendix part 1: Supplementary Figures and Tables 

Supplementary Table S1: Lists of the a-priori selected variables based on availability in the 

train and test cohorts, for each of the three PEEP tertiles.   

 A-priori selected variable set 

Lower PEEP tertile 
(≤8 cmH2O) 
&  
Higher PEEP tertile 
(≥12 cmH2O) 

• Sex (0=Female, 1=Male) 

• Pulmonary ARDS (0=no, 1=yes) 

• Age (years) 

• Heart rate (bpm) 

• Minute Volume (L/min) 

• Plateau Pressure (cmH2O) 

• FiO2 (%) 

• Tidal Volume (mL/kg predicted body weight) 

• Respiratory Rate (breaths per minute) 

• Driving Pressure (cmH2O) 

• Respiratory System Compliance (mL/cmH2O) 

Middle PEEP tertile 
(9-11 cmH2O) 

• Sex (0=Female, 1=Male) 

• Pulmonary ARDS (0=no, 1=yes) 

• Age (years) 

• Heart rate (bpm) 

• Minute Volume (L/min) 

• Plateau Pressure (cmH2O) 

• FiO2 (fraction) 

• Tidal Volume (mL/kg predicted body weight) 

• Respiratory Rate (breaths per minute) 

• Driving Pressure (cmH2O) 

• Respiratory System Compliance (mL/cmH2O) 

• PaO2 (mmHg) 

• PaCO2 (mmHg) 

• pH 

• PaO2/FiO2 (mmHg) 

 

  



Supplementary Table S2: Searched grids of the hyperparameters of the 10 candidate 

methods. 

Effect 

modelling 

technique 

Hyperparameter Grid searched 

S-Lasso penalty strength 10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

S-GBM Boosting type ['gbdt', 'dart'] 

 Maximum tree depth  

T-Lasso Outcome model in control group: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

 Outcome model in treatment group: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

T-GBM Outcome model in control group: 

Boosting type 

['gbdt', 'dart'] 

 Outcome model in control group: 

Maximum tree depth 

[3, unlimited] 

 Outcome model in treatment group: 

Boosting type  

['gbdt', 'dart'] 

 Outcome model in treatment group: 

Maximum tree depth 

[3, unlimited] 

X-Lasso Outcome model: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

 Tau model: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

 Propensity model: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

X-GBM Outcome model: 

Boosting type 

['gbdt', 'dart'] 

 Outcome model: 

Maximum tree depth 

[3, unlimited] 

 Tau model: 

Boosting type 

['gbdt', 'dart'] 

 Tau model: 

Maximum tree depth 

[3, unlimited] 

 Propensity model: 

Boosting type 

['gbdt', 'dart'] 

 Propensity model: 

Maximum tree depth 

[3, unlimited] 



R-Lasso Outcome model: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

 Propensity model: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

 R-learner: 

penalty strength 

10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps) 

R-GBM Outcome model: 

Boosting type 

['gbdt', 'dart'] 

 Outcome model: 

Maximum tree depth 

[3, unlimited] 

 Propensity model: 

Boosting type 

['gbdt', 'dart'] 

 Propensity model: 

Maximum tree depth 

[3, unlimited] 

 R-learner: 

Boosting type 

['gbdt', 'dart'] 

 R-learner: 

Maximum tree depth 

[3, unlimited] 

Tian penalty strength 10-2 to 102, evenly spaced on a 

logarithmic scale (7 steps 

Causal Forest (min_samples_split) minimum number of 

samples required to split an internal node 

[10, 20, 30] 

 (min_samples_leaf) minimum number of 

samples required to be at a leaf node 

[10, 20, 30, 40, 50, 60] 

 Maximum tree depth [2, 3, 7, unlimited] 

 

  



Supplementary Table S3: The Python implementations (using the pymer4 package1) for the 

linear mixed-effects logistic regression models (LMMs) used to estimate the marginal odds 

ratios (ORs), as well as to perform the interaction test. The term “T” denotes the treatment 

variable (ie, 0=lower PEEP strategy, 1=higher PEEP strategy), “subgroup” denotes the 

subgroup variable (for instance, the subgroup as identified by the effect models), 

“peep_tertile” denotes the PEEP tertile variable (ie, 0=PEEP≤8 cmH2O, 1=PEEP 9-11 cmH2O, 

2= PEEP ≥12 cmH2O, “trial” denotes the categorical variable for the randomized trial to 

which the patient belongs, and “pf_ratio” and “peep” denote the terms for the PaO2/FiO2 

and PEEP as continuous variables, “subgroup_mean” denotes the mean of the subgroup 

variable in each trial, and “subgroup_centered” denotes the subgroup variable centered 

about the trial-specific mean of the subgroup variable in each trial. 

 

Model 
number 

Model to .. Python Implementation 

1 … calculate the 
marginal odds ratios 

formula = "mortality_28 ~ T + (1 | trial)" 
 
model = Lmer(formula, data=Y, family='binomial') 
 

2 .. calculate the 
conditional odds ratios 

formula = "mortality_28 ~ Age + RR + T + (1 | trial)" 
 
model = Lmer(formula, data=Y, family='binomial') 
 

3 .. test the HTE among 
subgroups  

formula = "mortality_28 ~ T + subgroup + T:subgroup + (1 | 
trial)" 
 
model = Lmer(formula, data=Y, family='binomial') 
 

4 .. test the second-order 
HTE among subgroups 
and PEEP tertiles 

formula = "mortality_28 ~ T + subgroup + peep_tertile + 
T:subgroup + T:peep_tertile + T:subgroup:peep_tertile +  (1 
| trial)" 
 
model = Lmer(formula, data=Y, family='binomial') 
 

5 .. test the HTE among 
subgroups, 
disentangling within-
study and across-study 
information (to account 
for potential 
aggregation bias2) 

formula = "mortality ~ T + subgroup + T:subgroup_mean +  
T:subgroup_centered + (1 | trial)"  
 
model = Lmer(formula, data=Y, family='binomial') 

6 .. test the HTE for 
severity scores 

formula = "mortality_28 ~ T + severity_score + T: 
severity_score + (1 | trial)" 
 
model = Lmer(formula, data=Y, family='binomial') 



 

 

Supplementary Table S4: Variables selected in the forward selection in each fold of the outer 

‘leave-one-trial-out’ cross-validation for the modelling procedure using a causal forest with 

forward selection. ’STOPPED’ means that in this round, none of the left over candidate 

variables improved the discrimination for benefit (ie, the AUC-benefit) compared to the 

previous round, and the forward selection was stopped.  

 

 

Left-out 
trial 

Round Selected variable 

ALVEOLI 1 CRS 

 2 Driving pressure 

 3 FiO2 

 4 Sex 

 5 STOPPPED 

LOVS 1 CRS 

 2 Sex 

 3 STOPPED 

EXPRESS 1 CRS 

 2 Tidal Volume 

 3 STOPPED 

 

 

  



Supplementary Table S5: Variables selected in the forward selection in each round of the 

‘leave-one-trial-out’ cross-validation for training the final model (ie, using the complete train 

cohort to train) in the lower PEEP tertile (using the S-GBM) and the higher PEEP tertile 

(using the causal forest). ’STOPPED’ means that in this round, none of the left over 

candidate variables improved the discrimination for benefit (ie, the AUC-benefit) compared 

to the previous round, and the forward selection was stopped.  

 

(a)  

Left-out 
cohort 

Round Selected variable 

Test 
cohort 

1  Driving pressure  

 2 Pulmonary ARDS (0=no, 1=yes) 

 3 STOPPED 

 

 

(b)  

Left-out 
cohort 

Round Selected variable 

Test 
cohort 

1 Driving Pressure 

 2 Tidal Volume 

 3 STOPPED 

  



Supplementary Figure S1: Schematic overview of the method selection procedure, including 

the ‘outer’ and ‘nested’ leave-one-trial-out cross-validation (LOTO-CV).  

*Each candidate method is implemented with, and without forward selection, which is 

visualized in detail in Figure S2.  

**The training of the final models consists of a potential forward selection and 

hyperparameter optimization, as visualized in Figure S3. 

 

 

  



Supplementary Figure S2: Schematic overview of the forward selection procedure. 
* If the forward selection procedure is performed for training a final model, the procedure 
starts with the full train cohort (including three trials), and the LOTO-CVs will consist of three 
folds, each splitting the (full) train cohort into an inner train cohort (2 trials) and an inner 
test cohort (one trial).  

 

 

  



Supplementary Figure S3: Schematic overview of the training of final models.  

*if a final model is trained using a method implemented with forward selection, the forward 

selection is performed using all three trials from the train cohort (see Figure S2). For training 

the extra final model(s), the consistent variables were selected rather than performing a 

forward selection procedure.  

 

  



Supplementary Figure S4: Daily ventilatory settings during study days 1-7 in the 

experimental groups compared to the control groups of the eight included trials.  

(a) Mean PEEP levels 

 

(b) Mean FiO2 levels (this information was not available for the Cavalcanti et al.3  and 
Hodgson et al. 20194 trials).  

 

 



(c) Mean PaO2/FiO2 levels (this information was not available for the Hodgson et al. 20115 

trial). 

 

 

  



Supplementary Figure S5: Heterogeneity of treatment effect results of ‘apparent’ validation 

(ie, models both trained and evaluated in train cohort). Treatment effects of higher vs lower 

PEEP on the relative, odds ratio scale and the absolute, mortality risk difference scale, 

plotted for patients from the (a) ALVEOLI6 (n=243), (b) LOVS7 (n=194) and (c) EXPRESS8 

(n=462) trial with baseline PEEP ≤ 8 cmH2O, classified into the predicted harm, and 

predicted benefit from high PEEP by final model 1. NNT=number needed to treat. 

(a) ALVEOLI 

 

(b) LOVS 

 

  



(c) EXPRESS 

 

 

 

 

Supplementary Figure S6: Heterogeneity of treatment effect results of ‘apparent’ validation 

(ie, models both trained and evaluated in train cohort). Treatment effects of higher vs lower 

PEEP on the relative, odds ratio scale and the absolute, mortality risk difference scale, 

plotted for patients from the (a) ALVEOLI6 (n=243), (b) LOVS7 (n=194) and (c) EXPRESS8 

(n=462) trial with baseline PEEP ≤ 8 cmH2O, classified into the predicted harm, and 

predicted benefit from high PEEP by final model 2. NNT=number needed to treat. 

(a) ALVEOLI 

 

  



(b) LOVS 

 

 

 

 

c) EXPRESS 

 

  



Supplementary Figure S7: Heterogeneity of treatment effect results of ‘apparent’ validation 

(ie, models both trained and evaluated in train cohort). Treatment effects of higher vs lower 

PEEP on the relative, odds ratio scale and the absolute, mortality risk difference scale, 

plotted for patients from the (a) ALVEOLI6 (n=141), (b) LOVS7 (n=481) and (c) EXPRESS8 

(n=136) trial with baseline PEEP ≥ 12 cmH2O, classified into the predicted harm, and 

predicted benefit from high PEEP by final model 3. NNT=number needed to treat. 

(a) ALVEOLI 

 

(b) LOVS 

 

  



(c) EXPRESS 

 

 

Supplementary Figure S8: Heterogeneity of treatment effect results of ‘apparent’ validation 

(ie, models both trained and evaluated in train cohort). Treatment effects of higher vs lower 

PEEP on the relative, odds ratio scale and the absolute, mortality risk difference scale, 

plotted for patients from the (a) ALVEOLI6 (n=141), (b) LOVS7 (n=481) and (c) EXPRESS8 

(n=136) trial with baseline PEEP ≥ 12 cmH2O, classified into the predicted harm, and 

predicted benefit from high PEEP by final model 4. NNT=number needed to treat. 

(a) ALVEOLI 

 

  



(b) LOVS 

 

(c) EXPRESS 

 

  



Supplementary Figure S9: Calibration for benefit results, including AUC-benefit, of ‘apparent’ 

validation (ie, models both trained and evaluated in train cohort).  For patients in the (a) 

ALVEOLI6 (n=243), (b) LOVS7 (n=194) and (c) EXPRESS8 (n=462) trial with baseline PEEP ≤ 8 

cmH2O, patients are split into four subgroups based on ascending quartiles of the predicted 

individualised treatment effects (ITEs) predicted by final model 1. The predicted ITE 

distributions are visualised using violin plots next to the observed mortality reductions in 

each quartile. Error bars indicate 95% CIs. 

(a) ALVEOLI    (b) LOVS    (c) EXPRESS 

 

Supplementary Figure S10: Calibration for benefit results, including AUC-benefit, of 

‘apparent’ validation (ie, models both trained and evaluated in train cohort).  For patients in 

the (a) ALVEOLI6 (n=243), (b) LOVS7 (n=194) and (c) EXPRESS8 (n=462) trial with baseline 

PEEP ≤ 8 cmH2O, patients are split into four subgroups based on ascending quartiles of the 

predicted individualised treatment effects (ITEs) predicted by final model 2. The predicted 

ITE distributions are visualised using violin plots next to the observed mortality reductions in 

each quartile. Error bars indicate 95% CIs. 

(a) ALVEOLI    (b) LOVS    (c) EXPRESS 

 

 

 



Supplementary Figure S11: Calibration for benefit results, including AUC-benefit, of 

‘apparent’ validation (ie, models both trained and evaluated in train cohort).  For patients in 

the (a) ALVEOLI6 (n=141), (b) LOVS7 (n=481) and (c) EXPRESS8 (n=136) trial with baseline 

PEEP ≥ 12 cmH2O, patients are split into four subgroups based on ascending quartiles of the 

predicted individualised treatment effects (ITEs) predicted by final model 3. The predicted 

ITE distributions are visualised using violin plots next to the observed mortality reductions in 

each quartile. Error bars indicate 95% CIs. 

(a) ALVEOLI    (b) LOVS    (c) EXPRESS 

 

 

Supplementary Figure S12: Calibration for benefit results, including AUC-benefit, of 

‘apparent’ validation (ie, models both trained and evaluated in train cohort).  For patients in 

the (a) ALVEOLI6 (n=141), (b) LOVS7 (n=481) and (c) EXPRESS8 (n=136) trial with baseline 

PEEP ≥ 12 cmH2O, patients are split into four subgroups based on ascending quartiles of the 

predicted individualised treatment effects (ITEs) predicted by final model 4. The predicted 

ITE distributions are visualised using violin plots next to the observed mortality reductions in 

each quartile. Error bars indicate 95% CIs. 

(a) ALVEOLI    (b) LOVS    (c) EXPRESS 

 

 

 



Appendix part 2: Definition of the Area under the ‘benefit curve’ (ie, ‘AUC-benefit’) 

Derivation of AUC-benefit 

In this study, we implemented a version of the ‘AUC-benefit’ which is an update to the 

definition we proposed in an earlier study, where we now repeatedly split the patients into 

two groups, not based on a specific individualized treatment effect (ITE) threshold, but 

based on the patient’s rank, after sorting the patients based on ITE. 

The calculation of the AUC-benefit comprises the following steps: 

1. First, all the patients are ranked based on the predicted ITE, from the lowest to the 

highest prediction. 

2. We divide the patients into two subgroups, with the 25% of the patients with the 

lowest predicted individualized treatment effects (ie, the 25th percentile) in subgroup 

1, and the remaining patients in the other subgroup 2. 

3. The absolute benefit in terms of 28-day mortality rate reduction (%) is calculated in 

both subgroups, and the Δ-benefit is defined as the absolute benefit in subgroup 2 

minus the absolute benefit in subgroup 1.  

4. Then, steps 2 and 3 are repeated 9 times, but then with subgroup 1 consisting the Xth 

percentile of the patients, until the 75th percentile, using linearly spaced, equal steps.  

5. The resulting Δ-benefit’s calculated in steps 2-4 are plotted against the corresponding 

percentiles, creating the Δ-benefit curve.  

6. Finally, the area under the Δ-benefit curve (ie, the ‘AUC-benefit’) is calculated as the 

trapezoidal area under this curve. We used Sklearn’s ‘metrics.auc’ function to 

calculate the AUC-benefit. 

AUC-benefit weighted average 



As the AUC-benefit metric is for method selection in the ‘outer’ leave-one-trial-out cross-

validations (ie, ‘LOTO-CVs’), and also for the forward selection procedure and for the 

hyperparameter optimization in ‘nested’ LOTO-CVs. Hence, we deal with situations in which 

individualized treatment effect predictions for different left-out trials, coming from different 

trained models, need to be jointly evaluated. Simply combining the ITEs predicted during the 

different cross-validation folds may lead to undesirable effects due to between trial 

differences in average treatment effects (ie, aggregation bias). Therefore, we for each 

combination of hyperparameters during the hyperparameter grid search, or candidate 

feature during the forward selection procedure, we first calculated the AUC-benefits for the 

predictions resulting from each cross-validation fold, and combined these by calculating the 

weighted average of these AUC-benefits, using the relative size of the left-out set in each 

fold as relative to the total size of the data included in the LOTO-CV procedure as the weight.  
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